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Abstract: Viewing magma as a natural critical fluid decomposing spinodally. it is possible to consider
a magmatic rock as a system formed by one phase embedded in a background of the other phase.
Furthermore. because critical phenomenology predicts fractal structures in magmatic rocks, the
possibility of inquiring into magma behaviour on cooling it is offered. Small angle neutron scattering
experiments have been carried out on several magmatic rocks from different localities. The results
obtained. if on the one hand indicate the utility of the fractal concept in studying very complex
structural details in magmatic rocks. on the other hand. confirm the validity of the small angle
neutron scattering technique, for this kind of study. In particular, the analysis of the scattering data
excludes the possibility that, at the molecular level, our voleanic and plutonic rocks are fractal
volumes:; no inference is possible about the particle-matrix interface. In addition, comparing
between themselves the experimental results of the plutonic rocks with those of the volcanic ones. it
15 possible to notice a quite similar behaviour for all samples. This fact, clearly suggests that magma
behaviour on cooling occurs by means of a unique and iterative mechanism. This is consistent with
the hypothesis that the scattering originates from droplets with similar surface fractal dimension and
cooled at or near critical condition by spinodal mechanism.
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Introduction

In recent years much attention has been paid to fractal
objects, Mandelbrot (1977) has introduced the term “*fractal™
specifically for temporal or spatial phenomena that exhibit
partial correlations over many scales. Fractal theory covers by
now a long list of different subjects ranging from simple
geography to the study of mathematical models. A few
examples are landscapes (Mandelbrot, 1982), percolation on
fractal lattices (Havlin et al.. 1983). turbulence (Hentschel
and Procaccia. 1983). rings of Saturn (Avron and Simon.
1981). and polymer models (Havlin and Ben-Avraham,
1982: Magid et al.. 1983).

Self-similarity and Hausdorff dimension

A fractal object can be described by two properties. The
first one is sell similarity. which means that a detail of the
fractal object is structurally identical to the whole. or in other
words. that the structure of the object is independent of the
characteristics length scale of observation. This means that.in
the real world, an object can be considered as a fractal object

and be described by a fractal dimension only within some
spatial range (domain). The fractal structure is easily ob-
served by small angle neutron scattering (SANS) if self
similarity holds in some spatial range below 1000 4.

The second property which characterizes the fractal object
is its fractal or Hausdorff dimension. D (Mandelbrot. 1977).
defined as the exponent of the dimension R in the relation
M @ R ", where M represents the mass. For a linear fractal
function. the Hausdorff dimension D may vary between
I (completely differentiable) and 2 (so rough and irregular
that it effectively takes up the whole of a two-dimensional
topological space). For surfaces, the corresponding range for
D lies between 2 (absolutely smooth) and 3 (infinitely
crumped). In particular. for spatial dimension equal to 3.
a mass fractal can be called a volume fractal. and a boundary
fractal can be called a surface fractal. This fractal dimension
very often summarizes and averages over very complex
structural details.

Fractals in the Earth sciences
The application of the fractal theory to the Earth’s sciences

is currently an intense field of research (e. g. Mandelbrot.
1975: Burrough. 1981: Bale and Schmidt. 1984: Brown and
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Scholz, 1985: Turcotte, 1986: Plotnick. 1986). In particular,
the importance of the fractal properties in many sedimentary
rocks has been acknowledged by many scientists (e. g. Pape et
al.. 1983: Avnir et al.. 1984: Katz and Thompson. 1985: Hall
et al.. 1986; Krohn and Thompson. 1986: Wong et al., 1986:
Wong. 1987: Thompson et al.. 1987). In igneous petrology.
however, such a field of research is prenatal. In magmatic
rocks the study of fractals is useful if some physical property of
a rock can be related to the fractal dimension. This is. for
example, the case for magmatic rocks originated from
a critical fluid. where the critical behaviour predicts a [ractal
nature.

Fractal nature of critical phenomena
Critical fluids

The point on a temperature-pressure diagram that de-
seribes the physical conditions under which solid, liquid, and
gaseous phases can coexist at equilibrium in a single physical
system is the so-called *critical point™. In 1967 Fisher
proposed that. in the neighborhood of a critical point.
a condensing droplet’s area and volume are related by
a formula equivalent to area' ™ = volume' *. Toillustrate this
relation, he considered the condensation of vapor into liquid.
A gas consists of isolated molecules well separated from one
another, except for occasional clusters which are bound
together more-or-less tightly by the attractive forces. Clusters
of different sizes are in mutual statistical equilibrium.
associating and disassociating. but even fairly large clusters
resembling “droplets™ of liquid have a small chance of
occurring (Mandelbrot, 1982). For a large enough cluster. the
surface area is fairly well defined. The surface of a cluster
gives itstability. If the temperature now is lowered. it becomes
advantageous for clusters to combine to form droplets and for
droplets to aggregate. thereby reducing the total surface area
and hence lowering the total energy (Mandelbrot, 1982). 1f
conditions are favorable, the droplets grow rapidly. A mac-
roscopic droplet’s presence indicates that condensation has
taken place! Fisher (1967) evaluates D analytically without
concern for its geometric meaning. but it is unavoidable that
the underlying droplet surfaces are fractals of dimension D (e.
g. Mandelbrot. 1982: Peliti and Vulpiani. 1985). In particu-
lar. the analytic characteristics of a physical system in the
neighborhood of a critical point are scaling. therefore
governed by power laws,

In conclusion. building up a picture in which the fluid is
made up of droplets whose surface is a fractal object of
dimension D2 > 2. it is possible to explain some properties of
the critical point of fluids. In particular, let us now see what is
the behaviour of such a fluid if it is a magmatic fluid.

Petrologic model of magma critical behaviour
Singularity of the critical region

Statistical mechanies studies on phase distributions and
textural characters of magmatic rocks give valuable clues as to
the possible behaviour of natural magmas. On the basis of
modern statistical mechanics approximations and considering
peculiar textural characters of some igneous Sicilian rocks.
Lucido and Triolo (1983: 1984) outlined the behaviour of

a magma in the proximity of the critical region. These authors
describe the structure of magma in terms of probability
density functions of the position of the particles (ions and/or
non ions) making up the magmatic fluid. For a magmatic fluid
very much away from the critical region. the correlation
length = (in a sense this quantity is the spatial scale of
a fluctuation) is of the order of a few molecular diameters. By
approaching the critical region Z will increase up to several
hundred molecular diameters and hence the magmatic fluid
will actually behave in a peculiar way. in a sense will act like an
unstable svstem with high compressibility and long range
correlation between the particles. From a physico-chemical
standpoint this amounts to a magmatic fluid in which the
behaviour of any portion of the whole fluid is strictly related o
the behaviour of any other portion of the fluid itself. This
means that by approaching the critical surface liquid phases
will behave less and less as liquid and more and more like
a mixture of liquid and gas phases. owing to the increase of
Z(Lucido and Triolo, 1984). Let us now see what happens on
leaving the eritical conditions by cooling the magmatic {luid.
The effect of decreasing the temperature is also to decrease
the fluctuations characterising the critical behaviour. In
particular, the above correlation length will decrease and the
magma will behave more like a fluid with short range
correlation (liquid).

Liquid immiscibility in critical conditions

Very recently on the basis of the known physico-chemical
data on phase transformations and taking into account the
thermodynamic behaviour of a fluid near the critical region.
a new view of magma is proposed (Lucido. 1989). According
to this view magma is a natural critical fluid which decomposes
by spinodal mechanism. Within the spinodal region the
second derivative of the free energy with respect to the
concentration (0" G/0X7 ) is < 0. Now if the molar free energy
curve remains continuous with continuous first derivatives.
we have a spinodal in such a magma at all temperatures above
the critical consolution temperature. In such a case the two
phases in equilibrium are closely related and one phase makes
the other by continuous composition changes (Cahn, 1968).
Above the monotectic temperature the two-liquid equilib-
rium and the spinodal have a metastable continuation and
thus we have a spinodal reaction leading to two related
metastable phases (see Chan and Goldburg, 1987) in a li-
quidus plus solid portion of the diagram. That is, there is
a closely related new phase in the melt corresponding to
a liquid in density or nearest neighbor distance. Starting from
a4 magma in the critical condition. as temperature decreases.
a second liquid phase at different density initially separates on
a submicroscopic scale. and then. coalescing. collects into
larger differentiated clusters that are first tiny globules
(Lucido. 1989). In other words. in time. as temperature of
magma decreases. a continuous liquid fractionation occurs.
More specifically, the fluctuations of the spinodal type
involving high surface charge ions will be more effectively
damped than the others. and so there might be a tendency of
the fluid to split into two immiscible liquids, one enriched in
high charge ions and the other enriched in low charge ions.
That is, the magmatic fluid will tend to separate into two
immiscible liquid fractions. one enriched in elements like iron.
magnesium., calcium, titanium etc., and the other enriched in
low charge density ions and elements having the tendency to
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form polymeric networks (Lucido and Triolo, 1984). So. as
a consequence. we find droplets of dark (Fe rich) phase
dispersed in a clearer phase richer in elements forming
framework structures or vice-versa. In confirmation of this.
the existence of droplets of one phase embedded in a back-
ground of the other phase has been recognized as the source of
an essential singularity on the coexistence curve (e. g. Fisher.
1967; Langer. 1967; Domb, 1976: Binder. 1976: Glimm et
al.. 1976: Bruce and Wallace, 1981). “*Hence one can view
a magmatic rock as a random two-phase system. The
disordered nature of this system suggests that it can be used to
study statistical physics and to understand how randomness
on a microscopic (molecular) scale can furnish clues as to the
underlying mechanisms™. With regard to this, microscopic
nature is a rich source of experimental evidence of fractal
objects: prominent examples are critical fluctuations in phase
transitions (e. g. Bak. 1982: Suzuki: 1983: Pfeifer et al..
1984). On this subject, it is important to remember that
fractal surfaces themselves may be frozen critical phenomena
and that fracture of a magmatic rock can be understood as
a critical phenomenon. too (Pfeifer et al., 1984 ).

In conclusion. by considering the above petrologic model
and by analogy with other critical fluids. we should expect to
find droplets of magmatic fluid whose “surface™ is a fractal
object of dimension D. Because neutrons probe all of the
hidden interior structure of a magmatic rock. SANS seemed
to us a powerful method to test this hypothesis. Very recently.
SANS experiments have been carried out on volcanic rocks
from different localities (Lucido et al., 1988). The cooling of
magmas vields volcanic or plutonic different types of rocks
depending on the environmental conditions: in this paper we
apply the concept of fractal dimension D to some plutonic
rocks by means of small angle neutron scattering. In this way.
one of the main purposes of the paper is to compare the results
previously published for volcanic rocks with those here
presented for plutonic ones.

Experimental

The rock samples were mounted on cylindrical aluminium
holders about 17 in diameter. The area of the samples
exposed to the neutron beam was about 1 ¢m’, while the
thickness was such as to allow transmission of about 0.5.
Scattering intensities were recorded using the 10-m ORR
SANS camera of the National Center for Small Angle
Scattering Research at Oak Ridge Research Reactor (ORR)
in Oak Ridge (USA) and the 30-m SANS camera of the
National Center for Small Angle Scattering Research. at the
High Flux Isotope Reactor (HFIR) in Oak Ridge (USA). We
used neutrons of 4.75 A wavelength with a sample to detector
distance of 4.56 m for the ORR camera and varying between
3 and 19 m for the HFIR camera. Since this geometry gave us
a range of momentum transfer between 0.003 A4~ ' and 0.12
A7, the scale length investigated is between about 50 4 and
about 1000 A. During measurements the samples were kept
at room temperature. Correction for detector background
and sensitivity, conversion of scattering patterns to radial
averages and calculation of scattering cross sections per unit
volume d X (kj/d € (em™'), were obtained from these
averages by calibrations with secondary calibration standards
provided by the National Center for Small Angle Scattering
Research.

Theory

Before giving the scattering equations for fractals we shall
introduce a few generalities describing the experimental
method we used: more details can be found elsewhere (Wong.
1985, 1987: Wong et al., 1986: Wong and Bray. 1988:
Schaefer et al., 1984: Teixeira, 1988: Triolo et al., 1985).

In a neutron scattering experiment, a monochromatic beam
of neutrons of given wavelength. 4, and intensity. 10, impinges
upon the samples and is therefore scattered. The incident and
the scattered beams are characterized by their wavenumbers.
The scattering event is characterized by the momentum
transfer k (the difference between the wavenumbers of the
scattered and unscattered neutrons). and by the energy
transfer (their energy difference). For elastic scattering, the
momentum transfer is related to 2 and 1o the scattering angle.
2 ©, by means of the equation k& = 4 7 5in ©/A. If the scattering
objects are noninteracting, monodisperse spheres of radius R,
and scattering density ¢ imbedded in a dispersing medium
with scattering density o, then the scattered intensity as

a function of & is given by:

2

Itk) =1 (o — ‘J“}: [3 (sin(kR)-kR cos (kR)J/ICRF (1)
where Vis the volume of the scattering particle.

At large & R. equation (1) shows a &7 dependence (Porod
law) typical of systems characterized by a sharp interface
separating two media with different scattering density (Debye
et al.. 1957: Porod. 1982). For a diffuse interface, negative
deviation from the limiting slope can be found. A different
slope can be expected for fractal objects. The analysis of this
slope. in certain cases, yields information on the fractal
coefficient. For this reason we have applied (Lucido et al.,
1988) the scattering equations derived (Wong. 1985, 1987:
Wong et al.. 1986: Wong and Bray. 1987, 1988) for a two
phase model of non-interacting objects having fractal surface
or fractal volume. In fact. the above-mentioned petrologic
model shows that upon cooling. the magmatic fluid from
which the rocks originated will tend to separate into two
immiscible liquid fractions. one enriched in high charge
density ions. and the other enriched in low charge density ions
and elements having the tendency to form polymeric net-
works. We shall therefore assume that our rocks are made by
non-interacting. monodisperse. spherical particles embedded
in a uniform matrix. The surface between the particle and the
matrix is supposed to be rough: of course. the smooth
interface will simply be characterized by a small degree of
roughness. The result obtained (Wong. 1985) is equation
()

Ith) = Af1/K + a/k™™] (2)

where A is merely a collection of constants and depends on the
dimension, concentration and composition of the dispersed
phase. x is a universally positive parameter which charac-
terizes the surface roughness. while a is a function of the
roughness of the interface between the particles and the
matrix (¢ = O for smooth surfaces).

For the case of self-similar fractals for which v = 3-D,
D being the fractal dimension. an entirely equivalent equation
has been previously reported by Schaefer et al., (1984).
Therefore. in order to get information on the fractal dimen-
sion of a scattering object, scattering results must be obtained
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in a range of A values. From aplotof log I1k)vs. log k, a power
law exponent can be derived. As we shall see in the next
section. such an exponent may be related to the fractal
dimension D of the scattering objects.

Discussion

If the scattering intensity of a rock sample follows a &7
dependence. one can conclude that only the first term of
equation (2) isimportant. and hence that ¢ = O. Roughness is
therefore unimportant in the mentioned length scale. How-
ever. /(k) may possibly obey asingle power law with exponent
other than — 4. If the scattering does not originate from the
contrast at the interface particle-matrix, but rather from the
particle volume. and if the volume is fractal. then /(k) should
obey a single power law dependence with exponent
> — 3 (Schaefer et al.. 1984). Wong and coworkers (Wong.
1985, 1987; Wong et al., 1986: Wong and Bray, 1987, 1988)
have shown that if /(&) obeys a single power law dependence
with exponent < — 4 or if a portion of the scattering curve
obeys a single power law dependence with exponent < — 4.
then the surface is a fractal. However, as already said, a diffuse
interface may cause small negative deviations from Porod law.
We simulated this condition and found that such deviations.
even in the most dramatic case. should not be greater than
about 0.2 units. In any other case roughness is the dominating
factor in determining the scattering intensity. If the scattering
particles are interacting monodisperse spheres. a first order
correction to equation (2) can be obtained by multiplying it
times the structure function of the system (Triolo et al.. 1985).
For size-polydisperse particles, the analysis of the slope of log
I(k) vs. log k might still allow us to distinguish whether or not
the particles have a fractal volume. but no conclusion will be
possible on the interface (Wong. 1985, 1987: Wong et al..
1986: Wong and Bray. 1987, 1988: Martin, 1986). At the
moment. there is no treatment for the polydispersity related
to a distribution of fractal dimensions within the sample case.
unless the polvdispersity of fractal dimension is a consequence
of the size polydispersity (Martin, 1986).

Comparison between plutonic and volcanic rocks

We Tirst discuss the results obtained for the plutonic rocks
here reported. Figs. | through 3 show /og-log plots for our
samples. The numbers shown above each line are simply
archive numbers for the plutonic rocks described in Tab. 1. As
above 0.07 A" the scattered intensity becomes of the same
order of the background. only the portion of data between
0.003 41" "and 0.07 4~ " are shown in the log-log plots. In this
k range. the intensity of all our abyssal samples obevs a single
power law dependence with the exponents shown in Tab. 1.
The exponent of the power law varies between —3.4 and —4.0
for all samples. The values of the power law exponents are
such that polydispersity should not be so large as to prevent us
from concluding that in no case do the scattering particles
have fractal volumes.

Let us now see the results recently published by Lucido et
al. (1988) for some volcanic rocks from different localities.
Tab. 2 shows power law exponents for the scattering intensity
of 18 volcanic rock-samples. In the k range 0.007—0.1 4~
the intensity of all volcanic samples obeys a single power-law
dependence. The exponent of the power law varies between

logl(k)

log k

Fig. 1. log,, I{k) vs. log,, k plots of our plutonic rock samples. Each
curve is identified by the archive number of the rock.

4

1 L 1 ' L 1

-1.2 -
logk 08

Fig. 2. log,, I{k) vs. log,,, k plots of our plutonic rock samples. Each
curve is identified by the archive number of the rock.
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Fig. 3. log,, Itk) vs. log,, k plots of our plutonic rock samples. Each
curve is identified by the archive number of the rock.

—3.5 and —4.0 for all samples. Now. if we compare the power
law exponents of the plutonic rocks (see Tab. 1) with those of
the volcanic ones (see Tab. 2). surprisingly no difference can
be found! We observe that all magmatic (plutonic and
voleanic) samples. fall within a narrow range of values. that is.
it is possible to notice a quite similar behaviour. Fig. 4 exhibits
histograms that better visualize this similar behaviour.
Likewise the plutonic rocks. the values of the power law
exponents of the volcanic rocks are such that polydispersity

89
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Fig. 4. Frequency bar-graph of the power-law exponents (abscissas)
of volcanic (light-grev shadow) and plutonic (dark-grey shadow)
rocks.

should not be so large as to prevent us from concluding thatin
no case do the scattering particles have fractal volumes.

If we assume that the particles are monodisperse. then we
can conclude that the interface roughness is of dominant
importance for all plutonic and volcanic samples. Vice-versa.
if we assume that the samples are size polydisperse, then the
total interface of each sample. rather than the single particle-
-matrix interface, could be a fractal (Wong. 1985, 1987:
Wong etal.. 1986: Wong and Bray 1987. 1988). In both cases.
the dependence of /(k) on k would be the same: in this way no
inference is possible about the interface. However, although
no inference is possible about the particle-matrix interface.
the observed power law exponents suggest that there is
a “unique and iterative mechanism™ which regulates magma
behaviour on cooling. This is consistent with the hypothesis
that the scattering originates from droplets (produced by
density fluctuations) having similar surface fractal dimension.
spinodally cooled at or near critical condition. Such a mechan-

Table 1. Power-law exponents for the scattering intensity of the plutonic rocks studied. Sample numbers are archive numbers.

Sample Rock type Locality Power-law
i exponent
3 Spotted anorthosite Rustenburg Pt mine, Merensky Reef, —3.77£0.02
Bushveld Complex (South Africa)
4 Giant mottled anorthosite (with intercumulus Rustenburg Pt mine, Merensky Reel, Bushveld - 3.68+0,01
pyroxene clusters) Complex (South Africa)
13 Leucocratic granite (fine-grained rock) Tichka Massif, South-Western High Atlas (Morocco) —3.63+0.03
15 Granodiorite with scattered dark spots Tichka Massif, South-Western High Atlas (Morocco) -3.65+0.03
17 Dioritic rock, associated with sample 18 Tichka Massil. South-Western High Atlas (Morocco) -3.71x£0.03
(] Gabbroic rock. associated with sample 17 Tichka Massif, South-Western High Atlas (Morocco) — 344 +£0.02
19 Diorite (coarse-grained rock) Tichka Massif. South-Western High Atlas (Morocco) —-3.64£0.02
22 Amphibole-biotite granodiorite On the road o Burgos™ Forest. Burgos (Sardinia) —-3.78+0.02
23 Leucogranitic rock Below Burgos village. Burgos (Sardinia) -3.79+0.02
24 Magmatic rock having ..emulsion like™ structure  On the road Ozieri-Mores, to the South West of Ozieri - 3481001
(Sardinia)
31 Basic nodules-bearing granite Scopetu quarry, La Grucitta, Gallura (Sardinia) —3.45+0.03
33 Crranitic rock Punta Falcone (Sardinia) —3.60+0.02
34 Gabbroie basie rock Punta Falcone (Sardinia) - 3.60+0,01
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Table 2. Power-law exponents for the scattering intensity of the voleanic rocks studied by Lucido et al. (1988)

Sample  Rock type

Localiny

Power-law
exponent

IV Rhyolitic inclusion in soda-trachytic ignimbrite

15V Monchiquite
16V Camptonite
17V Monchiquite
18V Basaltic sphere

Cala Cinque Denti, Pantelleria

—-4.01 0,03

2V Soda-rhyolitic ignimbrite Northern coast of Bagno dell” Acqua. Pantelleria - 3.70£0.05
3V Soda-rhyolitic ignimbrite Khartibucale, Pantelleria =3.72+0.04
4V Hyvalopantellerite Cuddia del Gadir, Pantelleria - 4.0520.06
SV Basalt Contrada Bue Marino, Pantelleria =3.81x£0.02
6V Vitrophyric inclusion in pumice Punta Pozzolana, Pantelleria - 3652003
7V Granitoid inclusion in soda-trachytic lava Cala dell’Alea, Pantelleria = 3.66£0.02
8V Benmoreitic inclusion in hyaloclastite M. Levante, Linosa - 3.94+0.05
9V Gabbroic inclusion in hyaloclastite M. Levante. Linosa - 3.50+0.03
10V Benmoreitic inclusion in hyaloclastite M. Levante, Linosa =3.63£0.06
11V Granitoid inclusion in hyaloclastite M. Levante, Linosa —3.56+0.03
12V Granitoid inclusion in hyaloclastite M. Levante, Linosa =3.65+0.04
13V Granitoid inclusion in basaltic rock M. Vulcano, Linosa —3.61+0.04
14V Basaltic rock M. Vuleano, Linosa =3.64x0.01

Western Otago, New Zealand

Western Otago, New Zealand

Western Otago, New Zealand

Unknown: found on the slopes of M. Caputo.
a calcareous formation near Palermo -4 =0.1

=3.61£0.06
—-3.5940.02
—4.00x£0.05

ism can be evidently interrupted in a different way in different
physical environments: the difference is mainly due to
changes in equilibrium dependent on the rates of diffusion of
the component species and on the degree of supersaturation
of the magmatic fluid.

Conclusions

By introducing in the molecular domain of a magmatic rock
the Mandelbrot concept of fractal dimension by means of
SANS. and by considering the new viewpoint of magma such
as critical fluid decomposing spinodally. the following interes-
ting conclusions can be drawn for natural magmatic sys-
tems.

| — Fractal concepts are useful in interpreting complex
situations, like particle aggregation and frozen critical
phenomena, in magmatic rocks.

2 — Small angle neutron scattering is a powerful method
for studying fractality in rocky igneous complexes.

3 — The analysis of the scattering curves, based on the fact
that the experimental power law exponents lic between —3
and —4. in agreement with our expectation excludes the
possibility that the scattering particles of our plutonic and
volcanic rocks are fractal volumes.

4 — The exponents in the resulting power law share all
characteristics of exponents for “a unique and iterative
mechanism™. In our experiments, in fact. volcanic and
plutonic rocks surprisingly have quite similar behaviour. We
think that this similar behaviour is due to the fact that the
surface of the droplets of magmatic fluid had a defined and
similar fractal dimension D, produced by density fluctuations
on cooling. In corroboration of this view. using absorption
techniques. Carnaham et al. (1968) found fractal surfaces
(D = 2.88 and 2.73) for two granitic rocks from Nevada.
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